Lipoprotein lipase in the arterial wall: linking LDL to the arterial extracellular matrix and much more.
نویسندگان
چکیده
For low density lipoprotein (LDL) particles to be atherogenic, increasing evidence indicates that their residence time in the arterial intima must be sufficient to allow their modification into forms capable of triggering extracellular and intracellular lipid accumulation. Recent reports have confirmed the longstanding hypothesis that the major determinant(s) of initial LDL retention in the preatherosclerotic arterial intima is the proteoglycans. However, once the initial atherosclerotic lesions have formed, a shift to retention facilitated by macrophage-derived lipoprotein lipase (LPL) appears, leading to the progression of the lesions. Here, we review recent findings on the mechanisms enabling LPL to promote LDL retention and extracellular lipid accumulation in the arterial intima, and we describe the structures in the extracellular matrix that are held to be important in this process. Finally, the potentially harmful consequences of LDL linking by LPL and of other LPL actions in the arterial intima are briefly reviewed.
منابع مشابه
Lipoprotein lipase enhances the interaction of low density lipoproteins with artery-derived extracellular matrix proteoglycans.
The association of plasma low density lipoproteins (LDL) with arterial proteoglycans (PG) is of key importance in LDL retention and modification in the artery wall. Lipoprotein lipase (LpL), the rate-limiting enzyme for hydrolysis of lipoprotein triglyceride, is known to bind both LDL and arterial PG. In the presence of LpL, cellular internalization and degradation of LDL is enhanced by a pathw...
متن کاملLipoprotein Lipase Increases Low Density Lipoprotein Retention
Lipoprotein lipase (LPL), the rate-limiting enzyme for hydrolysis of plasma lipoprotein triglycerides, is a normal constituent of the arterial wall. We explored whether LPL affects (a) lipoprotein transport across bovine aortic endothelial cells or (b) lipoprotein binding to subendothelial cell matrix (retention). When bovine milk LPL was added to endothelial cell monolayers before addition of ...
متن کاملAutonomous Drug-Encapsulated Nanoparticles: Towards a Novel Non-Invasive Approach to Prevent Atherosclerosis
Introduction This paper proposes the concept of autonomous drug-encapsulated nanoparticle (ADENP) as a novel non-invasive approach to prevent atherosclerosis. ADENP consists of three simple units of sensor, controller (computing), and actuator. The hardware complexity of ADENP is much lower than most of the nanorobots, while the performance is maintained by the synergism in the swarm architectu...
متن کاملRetention of oxidized LDL by extracellular matrix proteoglycans leads to its uptake by macrophages: an alternative approach to study lipoproteins cellular uptake.
Interaction between arterial macrophages and oxidized LDL (Ox-LDL) leads to foam cell formation, a critical step during early atherogenesis. Until now, cellular uptake of lipoproteins was studied through incubation of the media-soluble lipoprotein with cultured macrophages. However, as lipoproteins in the arterial wall are bound to subendothelial matrix, we questioned whether the retention (bin...
متن کاملn-3 fatty acids reduce arterial LDL-cholesterol delivery and arterial lipoprotein lipase levels and lipase distribution.
OBJECTIVE We previously reported that saturated fat (SAT)-enriched diets increase arterial cholesteryl ester (CE) deposition, especially from LDL-selective uptake (SU), and this was associated with increased arterial lipoprotein lipase (LpL). We now question how n-3 fatty acid rich diets influence arterial cholesterol delivery and arterial LpL levels. METHODS AND RESULTS C57BL/6 mice were fed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 22 2 شماره
صفحات -
تاریخ انتشار 2002